Diffusion, Brownian Motion, Solid/Liquids/Gases

Question Paper 3

Level	IGCSE
Subject	Chemistry
ExamBoard	CIE
Торіс	The Particulate nature of matter
Sub-Topic	Diffusion,Brownian Motion,Solid/Liquids/ Gases
Paper	(Extended) Theory
Booklet	Question Paper 3

TimeAllowed:	72 minutes			
Score:	/60			
Percentage:	/100			

1 Acid-base reactions are examples of proton

(a) Ethylamine is a weak base and sodium hydroxide transfer. is a strong base.

- (i) In terms of proton transfer, explain what is meant by the term *weak* base.
 -[2]
- (ii) Given aqueous solutions of both bases, describe how you could show that sodium hydroxide is the stronger base. How could you ensure a 'fair' comparison between the two solutions?

(b) Ethylamine reacts with acids to form salts.

 $\begin{array}{rcl} {\rm CH_3CH_2NH_2} \ + \ {\rm HC} l \ \rightarrow \ {\rm CH_3CH_2NH_3C} l \\ {\rm ethylammonium\ chloride} \end{array}$

(i) Complete the equation for the reaction between sulfuric acid and ethylamine. Name the salt formed.

 \dots CH₃CH₂NH₂ + \dots \rightarrow \dots

name of salt[3]

(ii) Amines and their salts have similar chemical properties to ammonia and ammonium salts.

Suggest a reagent that could be used to displace the weak base, ethylamine, from its salt ethylammonium chloride.

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- (c) Gases diffuse, which means that they move to occupy the total available volume.
 - (i) Explain, using kinetic particle theory, why gases diffuse.

.....[2]

(ii) When the colourless gases hydrogen bromide and ethylamine come into contact, a white solid is formed.

 $\begin{array}{rcl} CH_{_3}CH_{_2}NH_{_2}(g) \ + \ HBr(g) \ \rightarrow \ CH_{_3}CH_{_2}NH_{_3}Br(s) \\ & \mbox{white solid} \end{array}$

The following apparatus can be used to compare the rates of diffusion of the two gases ethylamine and hydrogen bromide.

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

- 2 The halogens are a collection of diatomic non-metals in Group VII.
 - (a) Define the term *diatomic*.
 - (ii) What do the electron distributions of the halogens have in common?
 (iii) How do their electron distributions differ?
 [1]
 - (iv) Complete the table.

halogen	solid, liquid or gas at room temperature	colour
chlorine		
bromine		
iodine		

[2]

 (b) The halogens react with other non-metals to form covalent compounds. Draw a diagram which shows the arrangement of the valency electrons in one molecule of the covalent compound arsenic trifluoride. The electron distribution of an arsenic atom is 2 + 8 + 18 + 5.

Use x to represent an electron from an arsenic atom. Use o to represent an electron from a fluorine atom. (c) Photochromic glass is used in sunglasses. In bright light, the glass darkens reducing the amount of light reaching the eye. When the light is less bright, the glass becomes colourless increasing the amount of light reaching the eye.

Photochromic glass contains very small amounts of the halides silver(I) chloride and copper(I) chloride.

The reaction between these two chlorides is photochemical.

 $AgCl + CuCl \rightleftharpoons Ag + CuCl_2$ colourless colourless black colourless

How does photochromic glass work?

[3] [Total: 11]

- 3 Selenium and sulfur are in Group VI. They have similar properties.
 - (a) One of the main uses of selenium is in photoelectric cells. These cells can change light into electrical energy.
 - (i) Name a process which can change light into chemical energy.

.....

(ii) Name a device which can change chemical energy into electrical energy.

- (b) The electron distribution of a selenium atom is 2 + 8 + 18 + 6.
 - (i) Selenium forms an ionic compound with potassium. Draw a diagram which shows the formula of this ionic compound, the charges on the ions and the arrangement of the valency electrons around the negative ion.
 Use o to represent an electron from an atom of potassium.
 Use x to represent an electron from an atom of selenium.

Save My Exams! – The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

(ii) Draw a diagram showing the arrangement of the valency electrons in one molecule of the covalent compound selenium chloride.
 Use x to represent an electron from an atom of selenium.
 Use o to represent an electron from an atom of chlorine.

[3]

(iii) Predict **two** differences in the physical properties of these two compounds.

(c) The selenide ion reacts with water.

Se²⁻ + H₂O \rightarrow HSe⁻ + OH⁻

What type of reagent is the selenide ion in this reaction? Give a reason for your choice.

.....[3]

[Total: 13]

Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

- 4 Chlorine reacts with phosphorus to form phosphorus trichloride.
 - (a) Draw a diagram showing the arrangement of the valency electrons in one molecule of the covalent compound, phosphorus trichloride.
 Use x to represent an electron from a phosphorus atom.
 Use o to represent an electron from a chlorine atom.

[2]

- (b) Phosphorus trichloride reacts with water to form two acids.
 - (i) Balance the equation for this reaction.

$$PCl_{3} + \dots H_{2}O \rightarrow \dots HCl + H_{3}PO_{3}$$
[1]

(ii) Describe how you could show that phosphorus acid, H₃PO₃, is a weaker acid than hydrochloric acid.

.....[3]

Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

(iii) Two salts of phosphorus acid are its sodium salt, which is soluble in water, and its calcium salt which is insoluble in water. Suggest a method of preparation for each of these salts from aqueous phosphorus acid. Specify any other reagent needed and briefly outline the method.

sodium salt	
	[2]
calcium salt	
	[2]
	[~]
	[Total: 10]

- 5 Ethanoic acid is a colourless liquid at room temperature. It has the typical acid properties and forms compounds called ethanoates.
 - (a) A pure sample of ethanoic acid is slowly heated from 0°C to 150°C and its temperature is measured every minute. The results are represented on the graph below.

	C to D	E to F
separation (distance between particles)		
movement of particles	random and slow	
Can particles move apart to fill any volume?		
		<u> </u>

(iv) Complete the following table that compares the separation and movement of the molecules in regions C to D with those in E to F.

(b) Complete the word equations for the reactions of ethanoic acid.

	calcium	+	ethanoic acio	k	►					
					+					
			+ ethano	ic acid	→ zir	nc ethanoa	ite +	water		[2]
(c)	Write the hydroxide.	symbo	l equation f	or the	reaction	between	ethanoic	acid	and	sodium

[2]