Applications of Differentiation Question Paper 6

Level	A Level
Subject	Maths
Exam Board	OCR
Торіс	Differentiation
Sub Topic	Applications of Differentiation
Booklet	Question Paper 6

Time Allowed:	55 minutes	
Score:	/45	
Percentage:	/100	

1 A curve has equation $y = (x + 2)(x^2 - 3x + 5)$.

(i) Find the coordinates of the minimum point, justifying that it is a minimum.	[8]
(ii) Calculate the discriminant of $x^2 - 3x + 5$.	[2]
(iii) Explain why $(x+2)(x^2-3x+5)$ is always positive for $x > -2$.	[2]

- 2 (i) Find the equation of the tangent to the curve $y = 7 + 6x x^2$ at the point *P* where x = 5, giving your answer in the form ax + by + c = 0. [6]
 - (ii) This tangent meets the x-axis at Q. Find the coordinates of the mid-point of PQ. [3]
 - (iii) Find the equation of the line of symmetry of the curve $y = 7 + 6x x^2$. [2]
 - (iv) State the set of values of x for which $7 + 6x x^2$ is an increasing function. [2]
- Find the equation of the normal to the curve $y = x^3 4x^2 + 7$ at the point (2, -1), giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers. [7]
- 4 The quadratic equation $kx^2 30x + 25k = 0$ has equal roots. Find the possible values of k. [4]
- 5 The curve $y = x^3 + px^2 + 2$ has a stationary point when x = 4. Find the value of the constant p and determine whether the stationary point is a maximum or minimum point. [7]