Areas & Volumes Question Paper 7

Loval	International A Loval
Levei	International A Level
Subject	Maths
Exam Board	CIE
Торіс	Integration
Sub Topic	Areas & Volumes
Booklet	Question Paper 7

Time Allowed:	54 minutes
Score:	/45
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

The diagram shows the curve $y = 6x - x^2$ and the line y = 5. Find the area of the shaded region. [6]

The diagram shows part of the curve $y = \frac{a}{x}$, where *a* is a positive constant. Given that the volume obtained when the shaded region is rotated through 360° about the *x*-axis is 24π , find the value of *a*. [4]

The diagram shows part of the curve $y = x + \frac{4}{x}$ which has a minimum point at *M*. The line y = 5 intersects the curve at the points *A* and *B*.

- (i) Find the coordinates of A, B and M.
- (ii) Find the volume obtained when the shaded region is rotated through 360° about the x-axis. [6]

[5]

- 4 The equation of a curve is $y = x^4 + 4x + 9$.
 - (i) Find the coordinates of the stationary point on the curve and determine its nature. [4]
 - (ii) Find the area of the region enclosed by the curve, the x-axis and the lines x = 0 and x = 1. [3]
- 5 The function f is such that $f(x) = \frac{3}{2x+5}$ for $x \in \mathbb{R}, x \neq -2.5$.

(i)	Obtain an expression for $f'(x)$ and explain why f is a decreasing function.	[3]

- (ii) Obtain an expression for $f^{-1}(x)$. [2]
- (iii) A curve has the equation y = f(x). Find the volume obtained when the region bounded by the curve, the coordinate axes and the line x = 2 is rotated through 360° about the *x*-axis. [4]

3

The diagram shows part of the curve $y = \frac{6}{3x-2}$.

- (i) Find the gradient of the curve at the point where x = 2.
- (ii) Find the volume obtained when the shaded region is rotated through 360° about the *x*-axis, giving your answer in terms of π . [5]

[3]