Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

Bronze Level B4 Question paper

Level	A Level	
Exam Board	Edexcel GCE	
Subject	Mathematics	
Module	Core 1	
Difficulty Level	Bronze Level B4	
Booklet	Question paper	

Time Allowed:	90 minutes		
Score:	/75		
Percentage:	/100		

Grade Boundaries:

A*	Α	В	С	D	E	
>71	63	55	47	39	<31	

Save My Exams! – The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

1. Simplify $(3 + \sqrt{5})(3 - \sqrt{5})$.

(2)

2. (*a*) Expand and simplify $(7 + \sqrt{5})(3 - \sqrt{5})$.

(3)
$$7 \pm \sqrt{5}$$

(b) Express
$$\frac{7+\sqrt{5}}{3+\sqrt{5}}$$
 in the form $a + b\sqrt{5}$, where a and b are integers.

(3)

(3)

3. Given that
$$y = 2x^3 + \frac{3}{x^2}$$
, $x \neq 0$, find

(a)
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
,

(b)
$$\int y \, dx$$
, simplifying each term.

(3) June 2009

4. A sequence x_1, x_2, x_3, \ldots is defined by

 $x_1 = 1,$ $x_{n+1} = a x_n + 5,$ $n \ge 1,$

where *a* is a constant.

- (a) Write down an expression for x_2 in terms of a.
 - (1)
- (b) Show that $x_3 = a^2 + 5a + 5$. (2)

Given that $x_3 = 41$

(c) find the possible values of *a*.

(3)

January 2012

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

5. (a) Write
$$\frac{2\sqrt{x+3}}{x}$$
 in the form $2x^p + 3x^q$, where p and q are constants.

Given that
$$y = 5x - 7 + \frac{2\sqrt{x+3}}{x}, x > 0$$
,

2

(b) find
$$\frac{dy}{dx}$$
, simplifying the coefficient of each term.

(4)

(2)

(2)

January 2008

6. Given that
$$\frac{2x^2 - x^{\frac{2}{2}}}{\sqrt{x}}$$
 can be written in the form $2x^p - x^q$,

(a) write down the value of p and the value of q.

Given that
$$y = 5x^4 - 3 + \frac{2x^2 - x^{\frac{3}{2}}}{\sqrt{x}}$$
,

(b) find $\frac{dy}{dx}$, simplifying the coefficient of each term.

(4) January 2009

7. The curve with equation y = f(x) passes through the point (-1, 0).

Given that

$$f'(x) = 12x^2 - 8x + 1,$$

find f(x).

(5) January 2011

8. The equation $x^2 + (k-3)x + (3-2k) = 0$, where k is a constant, has two distinct real roots.

(*a*) Show that *k* satisfies

(*b*) Find the set of possible values of *k*.

$$k^2 + 2k - 3 > 0.$$

(3)

(4)

January 2011

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

- 9. (a) Factorise completely $x^3 4x$.
 - (b) Sketch the curve C with equation

$$y = x^3 - 4x,$$

showing the coordinates of the points at which the curve meets the axis.

The point A with x-coordinate -1 and the point B with x-coordinate 3 lie on the curve C.

- (c) Find an equation of the line which passes through A and B, giving your answer in the form y = mx + c, where m and c are constants.
- (d) Show that the length of AB is $k\sqrt{10}$, where k is a constant to be found.
- (2) ______January 2010
- 10. (a) Factorise completely $x^3 6x^2 + 9x$
 - (b) Sketch the curve with equation

$$y = x^3 - 6x^2 + 9x$$

showing the coordinates of the points at which the curve meets the x-axis.

Using your answer to part (b), or otherwise,

(c) sketch, on a separate diagram, the curve with equation

$$y = (x-2)^3 - 6(x-2)^2 + 9(x-2)$$

showing the coordinates of the points at which the curve meets the x-axis.

(2)

June 2009

(3)

(3)

(5)

(3)

(4)

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

11. The curve *C* has equation y = f(x), x > 0, where

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x - \frac{5}{\sqrt{x}} - 2.$$

Given that the point P(4, 5) lies on C, find

(*a*) f(x),

(5)

(b) an equation of the tangent to C at the point P, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(4)

May 2010

TOTAL FOR PAPER: 75 MARKS

END