For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

Balanced Equations + Associated Caks

Question Paper 8

Level	A Level
Subject	Chemistry
Exam Board	AQA
Module	3.1 Physical Chemistry
Topic	3.1.2 Atomic Substance
Sub-Topic	3.1.2.5 Balanced Equations + Associated Calcs
Booklet	Question Paper 8

Time Allowed: 56 minutes

Score: /40

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	75%	70%	60%	55%	50%	<50%

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

Q1.(a) A student investigated the acid content of a different crater-lake solution. The student used a 50.0 cm³ burette to measure out different volumes of this crater-lake solution. Each volume of crater-lake solution was titrated with a 0.100 mol dm⁻³ sodium hydroxide solution. Each titration was repeated. The results are shown below.

Volume of crater- cm³	lake solution /	10.0	20.0	30.0	40.0	50.0
Volume of	Experiment 1	5.85	17.00	20.00	26.50	32.45
sodium hydroxide solution / cm ³	Experiment 2	6.15	13.00	19.90	26.50	32.55
Average titre / cm³		6.00	15.00	19.95	26.50	32.50

(i) On the graph paper below, plot a graph of average titre (*y*-axis) against volume of crater-lake solution. Both axes must start at zero.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

(ii) Draw a line of best fit on the graph.

(1)

(3)

(iii) Use the graph to determine the titre that the student would have obtained using a 25.0 cm³ sample of crater-lake solution.

(1)

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

	(iv)	Excluding any anomalous points, which average titre value would you expect to be the least accurate value? Give one reason for your choice.	
		Least accurate average titre	
		Reason	
			(5)
			(2)
(b)	pow equa	ther 100 cm ³ sample of crater-lake solution was reacted with an excess of dered limestone. The gas produced was collected in a gas syringe. The ation for the reaction between the sulfuric(IV) acid in the crater-lake solution and calcium carbonate in the powdered limestone is shown below.	
		$H_2SO_3 + CaCO_3 \longrightarrow CaSO_3 + H_2O + CO_2$	
	crate	volume of gas collected from the reaction of the sulfuric(IV) acid in 100 cm³ of er-lake solution with an excess of powdered limestone was 81.0 cm³ at 298 K 1.00 x 10⁵ Pa.	
	(i)	State the ideal gas equation.	
			(4)
			(1)
	(ii)	Use the ideal gas equation to calculate the amount, in moles, of carbon dioxide formed.	
		Show your working. (The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)	
		(gas consolina a consolina)	
			(3)
	(iii)	Use the equation for the reaction and your answer from part (b)(ii) to calculate the minimum mass of calcium carbonate needed to neutralise the sulfuric(IV) acid in 1.00 dm³ of crater-lake solution. Show your working.	

(If you could not complete the calculation in part (b)(ii) assume that the amount

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

correct value.)	ł.)
	(3)
powdered limestone was tone needed to neutralise lution.	d to neutralise
	(2)
her than solid sodium	d sodium
	(1)
(Total 17 mar	(Total 17 marks)

Q2.Complexes containing transition elements have a wide variety of uses including acting as dyestuffs like *Prussian Blue*.

Cisplatin is a platinum-based chemotherapy drug used to treat various types of cancers. It was the first member of a class of anti-cancer drugs that react with DNA in tumour cells.

Cisplatin is prepared from K₂PtCl₄ according to the following scheme.

All the reactions shown are reversible.

(b)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

- (a) Name the type of reaction occurring in all four steps of the scheme.

 (1)

Explain why an excess of potassium iodide is used in Reaction 1.

- (c) (i) Write an equation for Reaction 1.
 - (ii) Calculate the percentage atom economy for the formation of K₂PtI₄ in Reaction 1.

 Show your working.

Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

		,	
			(2)
(d)	In F	Reaction 3 , silver nitrate solution is added to improve the yield of product.	
()	(i)	Write the simplest ionic equation for the reaction of iodide ions with silver nitrate.	
			(1)
	(ii)	Suggest why addition of silver nitrate improves the yield of product from	
	(")	Reaction 3.	
			(1)
(e)		gest two reasons, other than poor practical technique, why the overall yield of <i>latin</i> in this synthesis may be low.	
	Rea	son 1	
	Rea	son 2	
			(2)
(f)		cisplatin formed in Reaction 4 is impure. Outline how the impure solid is purified ecrystallisation.	
			(3)

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

	(g)	Plat	inum compounds are highly toxic.	
		(i)	State why <i>cisplatin</i> is used in cancer treatment despite its toxicity.	
				(1)
		(ii)	Suggest a suitable precaution that should be taken by medical staff when using <i>cisplatin</i> .	
			(Total 15 ma	(1) arks)
Q3.		In this	s question give all your answers to three significant figures.	
	_		m nitrate decomposes on heating to form magnesium oxide, nitrogen dioxide en as shown in the following equation.	
			$2Mg(NO3)2(s) \rightarrow 2MgO(s) + 4NO2(g) + O2(g)$	
	(a)		rmal decomposition of a sample of magnesium nitrate produced 0.741 g of nesium oxide.	
		(i)	Calculate the amount, in moles, of MgO in 0.741 g of magnesium oxide.	
				(2)
		(ii)	Calculate the total amount, in moles, of gas produced from this sample of magnesium nitrate.	
				(1)

(b)

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

	at 33	uce 0.402 mol of gas. Calculate the volume, in dm ³ , that this gas would occupy 33 K and 1.00 × 10 ⁵ Pa. gas constant $R = 8.31$ J K ⁻¹ mol ⁻¹)	
	(gue constant it of the more)	
			(3)
(c)		0152 mol sample of magnesium oxide, produced from the decomposition of nesium nitrate, was reacted with hydrochloric acid.	
		$MgO + 2HCI \rightarrow MgCI_2 + H_2O$	
	(i)	Calculate the amount, in moles, of HCl needed to react completely with the 0.0152 mol sample of magnesium oxide.	
			(1)
	(ii)	This 0.0152 mol sample of magnesium oxide required 32.4 cm³ of hydrochloric acid for complete reaction. Use this information and your answer to part (c) (i) to calculate the concentration, in mol dm³, of the hydrochloric acid.	
			(1)
		(Total 8 ma	