

Communication & homeostasis

Question Paper 1

Level	A Level
Subject	Biology
Exam Board	OCR
Module	Communication, homeostasis and energy
Topic	Communication & homeostasis
Booklet	Question Paper 1

Time allowed: 46 minutes

Score: /34

Percentage: /100

Grade Boundaries:

A*	A	В	С	D	E
>69%	56%	50%	42%	34%	26%

1

Question 1

Which of the options, ${\bf A}$ to ${\bf D}$, correctly describes how an endotherm would respond to an increase in temperature?

- A. dilation of arterioles near the surface of the skin
- B. erector muscles contract, causing hairs to stand up
- C. rapid contractions of skeletal muscles
- D. sweat glands release less sweat

[1]

Fig. 11.1 shows the heat flow through the skin of an athlete during vigorous exercise. Exercise starts at 400 seconds.

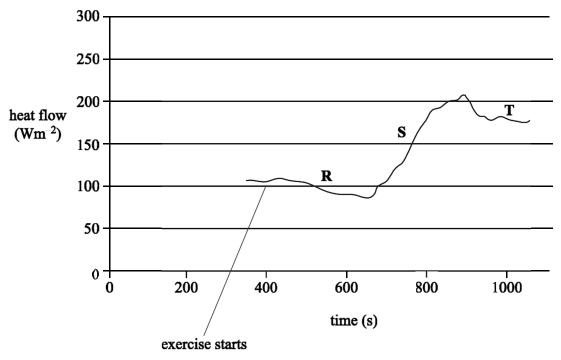


Fig. 11.1

Blood flow can be directed to those parts of the body that make the greatest demands.

Which row gives the best explanation of the stages in Fig. 11.1?

	R	S	Т
A	Blood directed away from	Blood directed towards skin	Balance achieved between
	skin to avoid excess heat	to release excess heat	loss of excess heat and the
	loss		need for oxygen in the
			muscles
В	Blood directed away from	Blood directed towards skin	Balance achieved between
	skin and towards the	to release excess heat	heat loss and excess heat
	muscles to supply more		created in the muscles
	oxygen for respiration		
C	Blood directed away from	Blood directed towards skin	Balance achieved between
	skin to avoid excess heat	to gain heat from the	heat loss and excess heat
	loss	environment	created in the muscles
D	Blood directed away from	Blood directed towards skin	Balance achieved between
	skin and towards the	to gain heat from the	loss of excess heat and the
	muscles to supply more	environment	need for oxygen in the
	oxygen for respiration		muscles

The maintenance of a stable body temperature is an important aspect of homeostasis in endotherms. This is known as thermoregulation.

ını	S IS KI	nown as	tnermoregulation.		
(a)	(i)	State w	here the core body temperature is monitored.	[1]
	(ii)	Name the temperate	mental [1]	
	(iii)	nanges in body [1	1]		
(b	-		respond in different ways to changes in environmental temperatu are listed below:	re. Some of the	ese
		J	secretion of adrenaline		
		K	sweating		
		L	shivering		
		М	contraction of erector pili muscles (attached to base of hairs)		
		N	curling up		
		0	finding shade		
		Р	vasoconstriction of arterioles near to skin surface		

Use the letters, ${\bf J}$ to ${\bf P}$, to identify:

(i) the responses that conserve heat.	[1]
(ii) the responses that cool the body.	[1]
(iii) a physiological response that generates heat.	[1]

(iv) a behavioural (not physiological) response to a decrease in environmental temperature.

[1]

(c)	Different endotherms have evolved different physiological and behavioural adaptations to
	assist with temperature control.

Explain how each of the following adaptations help the animal to control its body temperature.

(i) Elephants have large, thin ears that they move backwards and forwards when hot. [2]

(ii) Penguins living in cold climates have 'shunt' blood vessels. These shunt vessels link arterioles carrying blood towards their feet with small veins that carry blood away from their feet.

[1]

[Total: 10]

Question 4

Coordination and control, using electrical and chemical methods, are vital in the correct functioning of multicellular organisms.

(a)	Complete the following paragraphs by writing the most suitable word or term in each case	e.
	Multicellular organisms need to monitor and to changes in	
	both their external and internal environments. Organisms also need to co-ordinate the	
	activities of different in the body. The way in which cells	
	communicate with each other is known as	
	and this is achieved by the nervous and hormonal systems.	
	A regulatory mechanism known as	
	is used to maintain the internal environment at a relatively constant level despite	
	changes in the environment. This maintenance of a stable internal environment is	
	known as	[5]

b)	Identify the following:	
	(i) an organ that has both endocrine and exocrine functions.	[1]
((ii) the cells that form the myelin sheath around an axon.	[1]
(i) the hormone produced by the $\alpha-\text{cells}$ in the Islets of Langerhans.	[1]
(iv)	the nerve that stimulates cardiac muscle and has the opposite effect to the accelerator nerve.	[1]
(v)	an effector in the skin that is involved in temperature regulation.	[1]
	[Total:	10]

(a) The cells of the body need to communicate with one another.

State the name given to this process of communication.

[1]

(b) Fig. 1.1 is an electron micrograph of the junction between two neurones.

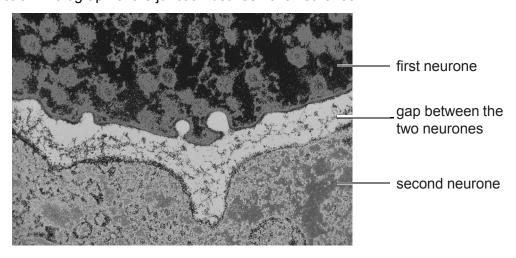


Fig. 1.1

(i) State the name given to the gap between the two neurones at this junction.

(ii) Outline how the first neurone communicates with the second neurone across the gap.

In your answer, you should use appropriate technical terms, spelt correctly.

[3]

. [1]

		Outline the importance of the junctions between neurones in the functioning of the nervous system. ervous system and the hormonal system are involved in the maintenance of core body trature.	[3]
(c)		e the most suitable word or term that has the same meaning as each of the following criptions:	
	(i)	animals that are able to regulate and maintain their core body temperature within name limits;	ow [1]
	(ii)	the increase in the diameter of the lumen of an arteriole to allow more blood to flow through.	[1]
(d)	(i)	Name a hormone that increases the metabolic rate and so generates heat.	[1]
	(ii)	Name the part of the brain where the thermoregulatory centre is located.	